One-key MAC (OMAC) is a message authentication code constructed from a block cipher much like the CBC-MAC algorithm.
I know reusing keys is a bad idea, especially for CBC and CBC-MAC, but the example for why on Wikipedia seemed to use encrypt-and-MAC. It seems obvious that the last block of encryption will be equal to the MAC when used in this way. If it's instead used in encrypt-then-MAC, wouldn't that be acceptable? Basic CBC-MAC does not result in a secure MAC for arbitrary-length messages., t q m end t m 11 1 1 1 The adversary obtains three samples, two of which are as follows: Present a 1-block message to the oracle and obtain tag, where basic-CBC-MAC,. ( is k mt t m m k x Hint: 22 2 2 2 a secret key not known to the adversary.).
Officially there are two OMAC algorithms (OMAC1 and OMAC2) which are both essentially the same except for a small tweak. OMAC1 is equivalent to CMAC, which became an NIST recommendation in May 2005.
It is free for all uses: it is not covered by any patents.[citation needed]In cryptography, CMAC (Cipher-based Message Authentication Code)[1] is a block cipher-based message authentication code algorithm. It may be used to provide assurance of the authenticity and, hence, the integrity of binary data. This mode of operation fixes security deficiencies of CBC-MAC (CBC-MAC is secure only for fixed-length messages).
The core of the CMAC algorithm is a variation of CBC-MAC that Black and Rogaway proposed and analyzed under the name XCBC[2] and submitted to NIST.[3] The XCBC algorithm efficiently addresses the security deficiencies of CBC-MAC, but requires three keys. Iwata and Kurosawa proposed an improvement of XCBC and named the resulting algorithm One-Key CBC-MAC (OMAC) in their papers.[4] They later submitted OMAC1,[5] a refinement of OMAC, and additional security analysis.[6] The OMAC algorithm reduces the amount of key material required for XCBC. CMAC is equivalent to OMAC1.
To generate an ℓ-bit CMAC tag (t) of a message (m) using a b-bit block cipher (E) and a secret key (k), one first generates two b-bit sub-keys (k1 and k2) using the following algorithm (this is equivalent to multiplication by x and x2 in a finite field GF(2b)). Let ≪ denote the standard left-shift operator and ⊕ denote bit-wise exclusive or:
As a small example, suppose b = 4, C = 00112, and k0 = Ek(0) = 01012. Then k1 = 10102 and k2 = 0100 ⊕ 0011 = 01112.
The CMAC tag generation process is as follows:
/c-programming-generate-a-256-bit-encryption-key.html. The verification process is as follows:
AES_CMAC()
function in 'impacket/blob/master/tests/misc/test_crypto.py', and its definition in 'impacket/blob/master/impacket/crypto.py' [7]. journal=
(help) journal=
(help) journal=
(help)This article shows how to use standard key derivation functions to derive keys and how to encrypt content using symmetric and asymmetric keys.
Symmetric key encryption, also called secret key encryption, requires that the key used for encryption also be used for decryption. You can use a SymmetricKeyAlgorithmProvider class to specify a symmetric algorithm and create or import a key. You can use static methods on the CryptographicEngine class to encrypt and decrypt data by using the algorithm and key.
Symmetric key encryption typically uses block ciphers and block cipher modes. A block cipher is a symmetric encryption function that operates on fixed size blocks. If the message you want to encrypt is longer than the block length, you must use a block cipher mode. A block cipher mode is a symmetric encryption function built by using a block cipher. It encrypts plaintext as a series of fixed size blocks. The following modes are supported for apps:
Some modes such as CBC require that you use an initialization vector (IV) for the first ciphertext block. The following are common initialization vectors. You specify the IV when calling CryptographicEngine.Encrypt. For most cases it is important that the IV never be reused with the same key.
Most modes require that the length of the plaintext be an exact multiple of the block size. This usually requires that you pad the plaintext to obtain the appropriate length.
While block ciphers encrypt fixed size blocks of data, stream ciphers are symmetric encryption functions that combine plaintext bits with a pseudorandom bit stream (called a key stream) to generate the ciphertext. Some block cipher modes such as output feedback mode (OTF) and counter mode (CTR) effectively turn a block cipher into a stream cipher. Actual stream ciphers such as RC4, however, typically operate at higher speeds than block cipher modes are capable of achieving.
The following example shows how to use the SymmetricKeyAlgorithmProvider class to create a symmetric key and use it to encrypt and decrypt data.
Asymmetric key cryptography, also called public key cryptography, uses a public key and a private key to perform encryption and decryption. The keys are different but mathematically related. Typically the private key is kept secret and is used to decrypt data while the public key is distributed to interested parties and is used to encrypt data. Asymmetric cryptography is also useful for signing data.
Because asymmetric cryptography is much slower than symmetric cryptography, it is seldom used to encrypt large amounts of data directly. Instead, it is typically used in the following manner to encrypt keys.
You can use an AsymmetricKeyAlgorithmProvider object to specify an asymmetric algorithm or a signing algorithm, to create or import an ephemeral key pair, or to import the public key portion of a key pair.
It is often necessary to derive additional keys from a shared secret. You can use the KeyDerivationAlgorithmProvider class and one of the following specialized methods in the KeyDerivationParameters class to derive keys.
Object | Description |
---|---|
BuildForPbkdf2 | Creates a KeyDerivationParameters object for use in the password-based key derivation function 2 (PBKDF2). |
BuildForSP800108 | Creates a KeyDerivationParameters object for use in a counter mode, hash-based message authentication code (HMAC) key derivation function. |
BuildForSP80056a | Creates a KeyDerivationParameters object for use in the SP800-56A key derivation function. |